1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 | /* Copyright (c) 2006-2010 by OpenLayers Contributors (see authors.txt for * full list of contributors). Published under the Clear BSD license. * See http://svn.openlayers.org/trunk/openlayers/license.txt for the * full text of the license. */ /** * @requires OpenLayers/Geometry/Collection.js * @requires OpenLayers/Geometry/LinearRing.js */ /** * Class: OpenLayers.Geometry.Polygon * Polygon is a collection of Geometry.LinearRings. * * Inherits from: * - <OpenLayers.Geometry.Collection> * - <OpenLayers.Geometry> */ OpenLayers.Geometry.Polygon = OpenLayers.Class( OpenLayers.Geometry.Collection, { /** * Property: componentTypes * {Array(String)} An array of class names representing the types of * components that the collection can include. A null value means the * component types are not restricted. */ componentTypes: ["OpenLayers.Geometry.LinearRing"], /** * Constructor: OpenLayers.Geometry.Polygon * Constructor for a Polygon geometry. * The first ring (this.component[0])is the outer bounds of the polygon and * all subsequent rings (this.component[1-n]) are internal holes. * * * Parameters: * components - {Array(<OpenLayers.Geometry.LinearRing>)} */ initialize: function(components) { OpenLayers.Geometry.Collection.prototype.initialize.apply(this, arguments); }, /** * APIMethod: getArea * Calculated by subtracting the areas of the internal holes from the * area of the outer hole. * * Returns: * {float} The area of the geometry */ getArea: function() { var area = 0.0; if ( this.components && (this.components.length > 0)) { area += Math.abs(this.components[0].getArea()); for (var i=1, len=this.components.length; i<len; i++) { area -= Math.abs(this.components[i].getArea()); } } return area; }, /** * APIMethod: getGeodesicArea * Calculate the approximate area of the polygon were it projected onto * the earth. * * Parameters: * projection - {<OpenLayers.Projection>} The spatial reference system * for the geometry coordinates. If not provided, Geographic/WGS84 is * assumed. * * Reference: * Robert. G. Chamberlain and William H. Duquette, "Some Algorithms for * Polygons on a Sphere", JPL Publication 07-03, Jet Propulsion * Laboratory, Pasadena, CA, June 2007 http://trs-new.jpl.nasa.gov/dspace/handle/2014/40409 * * Returns: * {float} The approximate geodesic area of the polygon in square meters. */ getGeodesicArea: function(projection) { var area = 0.0; if(this.components && (this.components.length > 0)) { area += Math.abs(this.components[0].getGeodesicArea(projection)); for(var i=1, len=this.components.length; i<len; i++) { area -= Math.abs(this.components[i].getGeodesicArea(projection)); } } return area; }, /** * Method: containsPoint * Test if a point is inside a polygon. Points on a polygon edge are * considered inside. * * Parameters: * point - {<OpenLayers.Geometry.Point>} * * Returns: * {Boolean | Number} The point is inside the polygon. Returns 1 if the * point is on an edge. Returns boolean otherwise. */ containsPoint: function(point) { var numRings = this.components.length; var contained = false; if(numRings > 0) { // check exterior ring - 1 means on edge, boolean otherwise contained = this.components[0].containsPoint(point); if(contained !== 1) { if(contained && numRings > 1) { // check interior rings var hole; for(var i=1; i<numRings; ++i) { hole = this.components[i].containsPoint(point); if(hole) { if(hole === 1) { // on edge contained = 1; } else { // in hole contained = false; } break; } } } } } return contained; }, /** * APIMethod: intersects * Determine if the input geometry intersects this one. * * Parameters: * geometry - {<OpenLayers.Geometry>} Any type of geometry. * * Returns: * {Boolean} The input geometry intersects this one. */ intersects: function(geometry) { var intersect = false; var i, len; if(geometry.CLASS_NAME == "OpenLayers.Geometry.Point") { intersect = this.containsPoint(geometry); } else if(geometry.CLASS_NAME == "OpenLayers.Geometry.LineString" || geometry.CLASS_NAME == "OpenLayers.Geometry.LinearRing") { // check if rings/linestrings intersect for(i=0, len=this.components.length; i<len; ++i) { intersect = geometry.intersects(this.components[i]); if(intersect) { break; } } if(!intersect) { // check if this poly contains points of the ring/linestring for(i=0, len=geometry.components.length; i<len; ++i) { intersect = this.containsPoint(geometry.components[i]); if(intersect) { break; } } } } else { for(i=0, len=geometry.components.length; i<len; ++ i) { intersect = this.intersects(geometry.components[i]); if(intersect) { break; } } } // check case where this poly is wholly contained by another if(!intersect && geometry.CLASS_NAME == "OpenLayers.Geometry.Polygon") { // exterior ring points will be contained in the other geometry var ring = this.components[0]; for(i=0, len=ring.components.length; i<len; ++i) { intersect = geometry.containsPoint(ring.components[i]); if(intersect) { break; } } } return intersect; }, /** * APIMethod: distanceTo * Calculate the closest distance between two geometries (on the x-y plane). * * Parameters: * geometry - {<OpenLayers.Geometry>} The target geometry. * options - {Object} Optional properties for configuring the distance * calculation. * * Valid options: * details - {Boolean} Return details from the distance calculation. * Default is false. * edge - {Boolean} Calculate the distance from this geometry to the * nearest edge of the target geometry. Default is true. If true, * calling distanceTo from a geometry that is wholly contained within * the target will result in a non-zero distance. If false, whenever * geometries intersect, calling distanceTo will return 0. If false, * details cannot be returned. * * Returns: * {Number | Object} The distance between this geometry and the target. * If details is true, the return will be an object with distance, * x0, y0, x1, and y1 properties. The x0 and y0 properties represent * the coordinates of the closest point on this geometry. The x1 and y1 * properties represent the coordinates of the closest point on the * target geometry. */ distanceTo: function(geometry, options) { var edge = !(options && options.edge === false); var result; // this is the case where we might not be looking for distance to edge if(!edge && this.intersects(geometry)) { result = 0; } else { result = OpenLayers.Geometry.Collection.prototype.distanceTo.apply( this, [geometry, options] ); } return result; }, CLASS_NAME: "OpenLayers.Geometry.Polygon" }); /** * APIMethod: createRegularPolygon * Create a regular polygon around a radius. Useful for creating circles * and the like. * * Parameters: * origin - {<OpenLayers.Geometry.Point>} center of polygon. * radius - {Float} distance to vertex, in map units. * sides - {Integer} Number of sides. 20 approximates a circle. * rotation - {Float} original angle of rotation, in degrees. */ OpenLayers.Geometry.Polygon.createRegularPolygon = function(origin, radius, sides, rotation) { var angle = Math.PI * ((1/sides) - (1/2)); if(rotation) { angle += (rotation / 180) * Math.PI; } var rotatedAngle, x, y; var points = []; for(var i=0; i<sides; ++i) { rotatedAngle = angle + (i * 2 * Math.PI / sides); x = origin.x + (radius * Math.cos(rotatedAngle)); y = origin.y + (radius * Math.sin(rotatedAngle)); points.push(new OpenLayers.Geometry.Point(x, y)); } var ring = new OpenLayers.Geometry.LinearRing(points); return new OpenLayers.Geometry.Polygon([ring]); }; |