1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 | /* Copyright (c) 2006-2008 MetaCarta, Inc., published under the Clear BSD * license. See http://svn.openlayers.org/trunk/openlayers/license.txt for the * full text of the license. */ /** * @requires OpenLayers/Geometry/LineString.js */ /** * Class: OpenLayers.Geometry.LinearRing * * A Linear Ring is a special LineString which is closed. It closes itself * automatically on every addPoint/removePoint by adding a copy of the first * point as the last point. * * Also, as it is the first in the line family to close itself, a getArea() * function is defined to calculate the enclosed area of the linearRing * * Inherits: * - <OpenLayers.Geometry.LineString> */ OpenLayers.Geometry.LinearRing = OpenLayers.Class( OpenLayers.Geometry.LineString, { /** * Property: componentTypes * {Array(String)} An array of class names representing the types of * components that the collection can include. A null * value means the component types are not restricted. */ componentTypes: ["OpenLayers.Geometry.Point"], /** * Constructor: OpenLayers.Geometry.LinearRing * Linear rings are constructed with an array of points. This array * can represent a closed or open ring. If the ring is open (the last * point does not equal the first point), the constructor will close * the ring. If the ring is already closed (the last point does equal * the first point), it will be left closed. * * Parameters: * points - {Array(<OpenLayers.Geometry.Point>)} points */ initialize: function(points) { OpenLayers.Geometry.LineString.prototype.initialize.apply(this, arguments); }, /** * APIMethod: addComponent * Adds a point to geometry components. If the point is to be added to * the end of the components array and it is the same as the last point * already in that array, the duplicate point is not added. This has * the effect of closing the ring if it is not already closed, and * doing the right thing if it is already closed. This behavior can * be overridden by calling the method with a non-null index as the * second argument. * * Parameter: * point - {<OpenLayers.Geometry.Point>} * index - {Integer} Index into the array to insert the component * * Returns: * {Boolean} Was the Point successfully added? */ addComponent: function(point, index) { var added = false; //remove last point var lastPoint = this.components.pop(); // given an index, add the point // without an index only add non-duplicate points if(index != null || !point.equals(lastPoint)) { added = OpenLayers.Geometry.Collection.prototype.addComponent.apply(this, arguments); } //append copy of first point var firstPoint = this.components[0]; OpenLayers.Geometry.Collection.prototype.addComponent.apply(this, [firstPoint]); return added; }, /** * APIMethod: removeComponent * Removes a point from geometry components. * * Parameters: * point - {<OpenLayers.Geometry.Point>} */ removeComponent: function(point) { if (this.components.length > 4) { //remove last point this.components.pop(); //remove our point OpenLayers.Geometry.Collection.prototype.removeComponent.apply(this, arguments); //append copy of first point var firstPoint = this.components[0]; OpenLayers.Geometry.Collection.prototype.addComponent.apply(this, [firstPoint]); } }, /** * APIMethod: move * Moves a geometry by the given displacement along positive x and y axes. * This modifies the position of the geometry and clears the cached * bounds. * * Parameters: * x - {Float} Distance to move geometry in positive x direction. * y - {Float} Distance to move geometry in positive y direction. */ move: function(x, y) { for(var i = 0, len=this.components.length; i<len - 1; i++) { this.components[i].move(x, y); } }, /** * APIMethod: rotate * Rotate a geometry around some origin * * Parameters: * angle - {Float} Rotation angle in degrees (measured counterclockwise * from the positive x-axis) * origin - {<OpenLayers.Geometry.Point>} Center point for the rotation */ rotate: function(angle, origin) { for(var i=0, len=this.components.length; i<len - 1; ++i) { this.components[i].rotate(angle, origin); } }, /** * APIMethod: resize * Resize a geometry relative to some origin. Use this method to apply * a uniform scaling to a geometry. * * Parameters: * scale - {Float} Factor by which to scale the geometry. A scale of 2 * doubles the size of the geometry in each dimension * (lines, for example, will be twice as long, and polygons * will have four times the area). * origin - {<OpenLayers.Geometry.Point>} Point of origin for resizing * ratio - {Float} Optional x:y ratio for resizing. Default ratio is 1. * * Returns: * {OpenLayers.Geometry} - The current geometry. */ resize: function(scale, origin, ratio) { for(var i=0, len=this.components.length; i<len - 1; ++i) { this.components[i].resize(scale, origin, ratio); } return this; }, /** * APIMethod: transform * Reproject the components geometry from source to dest. * * Parameters: * source - {<OpenLayers.Projection>} * dest - {<OpenLayers.Projection>} * * Returns: * {<OpenLayers.Geometry>} */ transform: function(source, dest) { if (source && dest) { for (var i=0, len=this.components.length; i<len - 1; i++) { var component = this.components[i]; component.transform(source, dest); } this.bounds = null; } return this; }, /** * APIMethod: getCentroid * * Returns: * {<OpenLayers.Geometry.Point>} The centroid of the collection */ getCentroid: function() { if ( this.components && (this.components.length > 2)) { var sumX = 0.0; var sumY = 0.0; for (var i = 0; i < this.components.length - 1; i++) { var b = this.components[i]; var c = this.components[i+1]; sumX += (b.x + c.x) * (b.x * c.y - c.x * b.y); sumY += (b.y + c.y) * (b.x * c.y - c.x * b.y); } var area = -1 * this.getArea(); var x = sumX / (6 * area); var y = sumY / (6 * area); } return new OpenLayers.Geometry.Point(x, y); }, /** * APIMethod: getArea * Note - The area is positive if the ring is oriented CW, otherwise * it will be negative. * * Returns: * {Float} The signed area for a ring. */ getArea: function() { var area = 0.0; if ( this.components && (this.components.length > 2)) { var sum = 0.0; for (var i=0, len=this.components.length; i<len - 1; i++) { var b = this.components[i]; var c = this.components[i+1]; sum += (b.x + c.x) * (c.y - b.y); } area = - sum / 2.0; } return area; }, /** * APIMethod: getGeodesicArea * Calculate the approximate area of the polygon were it projected onto * the earth. Note that this area will be positive if ring is oriented * clockwise, otherwise it will be negative. * * Parameters: * projection - {<OpenLayers.Projection>} The spatial reference system * for the geometry coordinates. If not provided, Geographic/WGS84 is * assumed. * * Reference: * Robert. G. Chamberlain and William H. Duquette, "Some Algorithms for * Polygons on a Sphere", JPL Publication 07-03, Jet Propulsion * Laboratory, Pasadena, CA, June 2007 http://trs-new.jpl.nasa.gov/dspace/handle/2014/40409 * * Returns: * {float} The approximate signed geodesic area of the polygon in square * meters. */ getGeodesicArea: function(projection) { var ring = this; // so we can work with a clone if needed if(projection) { var gg = new OpenLayers.Projection("EPSG:4326"); if(!gg.equals(projection)) { ring = this.clone().transform(projection, gg); } } var area = 0.0; var len = ring.components && ring.components.length; if(len > 2) { var p1, p2; for(var i=0; i<len-1; i++) { p1 = ring.components[i]; p2 = ring.components[i+1]; area += OpenLayers.Util.rad(p2.x - p1.x) * (2 + Math.sin(OpenLayers.Util.rad(p1.y)) + Math.sin(OpenLayers.Util.rad(p2.y))); } area = area * 6378137.0 * 6378137.0 / 2.0; } return area; }, /** * Method: containsPoint * Test if a point is inside a linear ring. For the case where a point * is coincident with a linear ring edge, returns 1. Otherwise, * returns boolean. * * Parameters: * point - {<OpenLayers.Geometry.Point>} * * Returns: * {Boolean | Number} The point is inside the linear ring. Returns 1 if * the point is coincident with an edge. Returns boolean otherwise. */ containsPoint: function(point) { var approx = OpenLayers.Number.limitSigDigs; var digs = 14; var px = approx(point.x, digs); var py = approx(point.y, digs); function getX(y, x1, y1, x2, y2) { return (((x1 - x2) * y) + ((x2 * y1) - (x1 * y2))) / (y1 - y2); } var numSeg = this.components.length - 1; var start, end, x1, y1, x2, y2, cx, cy; var crosses = 0; for(var i=0; i<numSeg; ++i) { start = this.components[i]; x1 = approx(start.x, digs); y1 = approx(start.y, digs); end = this.components[i + 1]; x2 = approx(end.x, digs); y2 = approx(end.y, digs); /** * The following conditions enforce five edge-crossing rules: * 1. points coincident with edges are considered contained; * 2. an upward edge includes its starting endpoint, and * excludes its final endpoint; * 3. a downward edge excludes its starting endpoint, and * includes its final endpoint; * 4. horizontal edges are excluded; and * 5. the edge-ray intersection point must be strictly right * of the point P. */ if(y1 == y2) { // horizontal edge if(py == y1) { // point on horizontal line if(x1 <= x2 && (px >= x1 && px <= x2) || // right or vert x1 >= x2 && (px <= x1 && px >= x2)) { // left or vert // point on edge crosses = -1; break; } } // ignore other horizontal edges continue; } cx = approx(getX(py, x1, y1, x2, y2), digs); if(cx == px) { // point on line if(y1 < y2 && (py >= y1 && py <= y2) || // upward y1 > y2 && (py <= y1 && py >= y2)) { // downward // point on edge crosses = -1; break; } } if(cx <= px) { // no crossing to the right continue; } if(x1 != x2 && (cx < Math.min(x1, x2) || cx > Math.max(x1, x2))) { // no crossing continue; } if(y1 < y2 && (py >= y1 && py < y2) || // upward y1 > y2 && (py < y1 && py >= y2)) { // downward ++crosses; } } var contained = (crosses == -1) ? // on edge 1 : // even (out) or odd (in) !!(crosses & 1); return contained; }, /** * APIMethod: intersects * Determine if the input geometry intersects this one. * * Parameters: * geometry - {<OpenLayers.Geometry>} Any type of geometry. * * Returns: * {Boolean} The input geometry intersects this one. */ intersects: function(geometry) { var intersect = false; if(geometry.CLASS_NAME == "OpenLayers.Geometry.Point") { intersect = this.containsPoint(geometry); } else if(geometry.CLASS_NAME == "OpenLayers.Geometry.LineString") { intersect = geometry.intersects(this); } else if(geometry.CLASS_NAME == "OpenLayers.Geometry.LinearRing") { intersect = OpenLayers.Geometry.LineString.prototype.intersects.apply( this, [geometry] ); } else { // check for component intersections< |