More between points work + mobile UI work:
[bus.git] / openlayers / lib / OpenLayers / Geometry / LinearRing.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
/* Copyright (c) 2006-2008 MetaCarta, Inc., published under the Clear BSD
 * license.  See http://svn.openlayers.org/trunk/openlayers/license.txt for the
 * full text of the license. */
 
/**
 * @requires OpenLayers/Geometry/LineString.js
 */
 
/**
 * Class: OpenLayers.Geometry.LinearRing
 * 
 * A Linear Ring is a special LineString which is closed. It closes itself 
 * automatically on every addPoint/removePoint by adding a copy of the first
 * point as the last point. 
 * 
 * Also, as it is the first in the line family to close itself, a getArea()
 * function is defined to calculate the enclosed area of the linearRing
 * 
 * Inherits:
 *  - <OpenLayers.Geometry.LineString>
 */
OpenLayers.Geometry.LinearRing = OpenLayers.Class(
  OpenLayers.Geometry.LineString, {
 
    /**
     * Property: componentTypes
     * {Array(String)} An array of class names representing the types of 
     *                 components that the collection can include.  A null 
     *                 value means the component types are not restricted.
     */
    componentTypes: ["OpenLayers.Geometry.Point"],
 
    /**
     * Constructor: OpenLayers.Geometry.LinearRing
     * Linear rings are constructed with an array of points.  This array
     *     can represent a closed or open ring.  If the ring is open (the last
     *     point does not equal the first point), the constructor will close
     *     the ring.  If the ring is already closed (the last point does equal
     *     the first point), it will be left closed.
     * 
     * Parameters:
     * points - {Array(<OpenLayers.Geometry.Point>)} points
     */
    initialize: function(points) {
        OpenLayers.Geometry.LineString.prototype.initialize.apply(this, 
                                                                  arguments);
    },
 
    /**
     * APIMethod: addComponent
     * Adds a point to geometry components.  If the point is to be added to
     *     the end of the components array and it is the same as the last point
     *     already in that array, the duplicate point is not added.  This has 
     *     the effect of closing the ring if it is not already closed, and 
     *     doing the right thing if it is already closed.  This behavior can 
     *     be overridden by calling the method with a non-null index as the 
     *     second argument.
     *
     * Parameter:
     * point - {<OpenLayers.Geometry.Point>}
     * index - {Integer} Index into the array to insert the component
     * 
     * Returns:
     * {Boolean} Was the Point successfully added?
     */
    addComponent: function(point, index) {
        var added = false;
 
        //remove last point
        var lastPoint = this.components.pop();
 
        // given an index, add the point
        // without an index only add non-duplicate points
        if(index != null || !point.equals(lastPoint)) {
            added = OpenLayers.Geometry.Collection.prototype.addComponent.apply(this, 
                                                                    arguments);
        }
 
        //append copy of first point
        var firstPoint = this.components[0];
        OpenLayers.Geometry.Collection.prototype.addComponent.apply(this, 
                                                                [firstPoint]);
        
        return added;
    },
    
    /**
     * APIMethod: removeComponent
     * Removes a point from geometry components.
     *
     * Parameters:
     * point - {<OpenLayers.Geometry.Point>}
     */
    removeComponent: function(point) {
        if (this.components.length > 4) {
 
            //remove last point
            this.components.pop();
            
            //remove our point
            OpenLayers.Geometry.Collection.prototype.removeComponent.apply(this, 
                                                                    arguments);
            //append copy of first point
            var firstPoint = this.components[0];
            OpenLayers.Geometry.Collection.prototype.addComponent.apply(this, 
                                                                [firstPoint]);
        }
    },
    
    /**
     * APIMethod: move
     * Moves a geometry by the given displacement along positive x and y axes.
     *     This modifies the position of the geometry and clears the cached
     *     bounds.
     *
     * Parameters:
     * x - {Float} Distance to move geometry in positive x direction. 
     * y - {Float} Distance to move geometry in positive y direction.
     */
    move: function(x, y) {
        for(var i = 0, len=this.components.length; i<len - 1; i++) {
            this.components[i].move(x, y);
        }
    },
 
    /**
     * APIMethod: rotate
     * Rotate a geometry around some origin
     *
     * Parameters:
     * angle - {Float} Rotation angle in degrees (measured counterclockwise
     *                 from the positive x-axis)
     * origin - {<OpenLayers.Geometry.Point>} Center point for the rotation
     */
    rotate: function(angle, origin) {
        for(var i=0, len=this.components.length; i<len - 1; ++i) {
            this.components[i].rotate(angle, origin);
        }
    },
 
    /**
     * APIMethod: resize
     * Resize a geometry relative to some origin.  Use this method to apply
     *     a uniform scaling to a geometry.
     *
     * Parameters:
     * scale - {Float} Factor by which to scale the geometry.  A scale of 2
     *                 doubles the size of the geometry in each dimension
     *                 (lines, for example, will be twice as long, and polygons
     *                 will have four times the area).
     * origin - {<OpenLayers.Geometry.Point>} Point of origin for resizing
     * ratio - {Float} Optional x:y ratio for resizing.  Default ratio is 1.
     * 
     * Returns:
     * {OpenLayers.Geometry} - The current geometry. 
     */
    resize: function(scale, origin, ratio) {
        for(var i=0, len=this.components.length; i<len - 1; ++i) {
            this.components[i].resize(scale, origin, ratio);
        }
        return this;
    },
    
    /**
     * APIMethod: transform
     * Reproject the components geometry from source to dest.
     *
     * Parameters:
     * source - {<OpenLayers.Projection>}
     * dest - {<OpenLayers.Projection>}
     * 
     * Returns:
     * {<OpenLayers.Geometry>} 
     */
    transform: function(source, dest) {
        if (source && dest) {
            for (var i=0, len=this.components.length; i<len - 1; i++) {
                var component = this.components[i];
                component.transform(source, dest);
            }
            this.bounds = null;
        }
        return this;
    },
    
    /**
     * APIMethod: getCentroid
     *
     * Returns:
     * {<OpenLayers.Geometry.Point>} The centroid of the collection
     */
    getCentroid: function() {
        if ( this.components && (this.components.length > 2)) {
            var sumX = 0.0;
            var sumY = 0.0;
            for (var i = 0; i < this.components.length - 1; i++) {
                var b = this.components[i];
                var c = this.components[i+1];
                sumX += (b.x + c.x) * (b.x * c.y - c.x * b.y);
                sumY += (b.y + c.y) * (b.x * c.y - c.x * b.y);
            }
            var area = -1 * this.getArea();
            var x = sumX / (6 * area);
            var y = sumY / (6 * area);
        }
        return new OpenLayers.Geometry.Point(x, y);
    },
 
    /**
     * APIMethod: getArea
     * Note - The area is positive if the ring is oriented CW, otherwise
     *         it will be negative.
     * 
     * Returns:
     * {Float} The signed area for a ring.
     */
    getArea: function() {
        var area = 0.0;
        if ( this.components && (this.components.length > 2)) {
            var sum = 0.0;
            for (var i=0, len=this.components.length; i<len - 1; i++) {
                var b = this.components[i];
                var c = this.components[i+1];
                sum += (b.x + c.x) * (c.y - b.y);
            }
            area = - sum / 2.0;
        }
        return area;
    },
    
    /**
     * APIMethod: getGeodesicArea
     * Calculate the approximate area of the polygon were it projected onto
     *     the earth.  Note that this area will be positive if ring is oriented
     *     clockwise, otherwise it will be negative.
     *
     * Parameters:
     * projection - {<OpenLayers.Projection>} The spatial reference system
     *     for the geometry coordinates.  If not provided, Geographic/WGS84 is
     *     assumed.
     * 
     * Reference:
     * Robert. G. Chamberlain and William H. Duquette, "Some Algorithms for
     *     Polygons on a Sphere", JPL Publication 07-03, Jet Propulsion
     *     Laboratory, Pasadena, CA, June 2007 http://trs-new.jpl.nasa.gov/dspace/handle/2014/40409
     *
     * Returns:
     * {float} The approximate signed geodesic area of the polygon in square
     *     meters.
     */
    getGeodesicArea: function(projection) {
        var ring = this;  // so we can work with a clone if needed
        if(projection) {
            var gg = new OpenLayers.Projection("EPSG:4326");
            if(!gg.equals(projection)) {
                ring = this.clone().transform(projection, gg);
            }
        }
        var area = 0.0;
        var len = ring.components && ring.components.length;
        if(len > 2) {
            var p1, p2;
            for(var i=0; i<len-1; i++) {
                p1 = ring.components[i];
                p2 = ring.components[i+1];
                area += OpenLayers.Util.rad(p2.x - p1.x) *
                        (2 + Math.sin(OpenLayers.Util.rad(p1.y)) +
                        Math.sin(OpenLayers.Util.rad(p2.y)));
            }
            area = area * 6378137.0 * 6378137.0 / 2.0;
        }
        return area;
    },
    
    /**
     * Method: containsPoint
     * Test if a point is inside a linear ring.  For the case where a point
     *     is coincident with a linear ring edge, returns 1.  Otherwise,
     *     returns boolean.
     *
     * Parameters:
     * point - {<OpenLayers.Geometry.Point>}
     *
     * Returns:
     * {Boolean | Number} The point is inside the linear ring.  Returns 1 if
     *     the point is coincident with an edge.  Returns boolean otherwise.
     */
    containsPoint: function(point) {
        var approx = OpenLayers.Number.limitSigDigs;
        var digs = 14;
        var px = approx(point.x, digs);
        var py = approx(point.y, digs);
        function getX(y, x1, y1, x2, y2) {
            return (((x1 - x2) * y) + ((x2 * y1) - (x1 * y2))) / (y1 - y2);
        }
        var numSeg = this.components.length - 1;
        var start, end, x1, y1, x2, y2, cx, cy;
        var crosses = 0;
        for(var i=0; i<numSeg; ++i) {
            start = this.components[i];
            x1 = approx(start.x, digs);
            y1 = approx(start.y, digs);
            end = this.components[i + 1];
            x2 = approx(end.x, digs);
            y2 = approx(end.y, digs);
            
            /**
             * The following conditions enforce five edge-crossing rules:
             *    1. points coincident with edges are considered contained;
             *    2. an upward edge includes its starting endpoint, and
             *    excludes its final endpoint;
             *    3. a downward edge excludes its starting endpoint, and
             *    includes its final endpoint;
             *    4. horizontal edges are excluded; and
             *    5. the edge-ray intersection point must be strictly right
             *    of the point P.
             */
            if(y1 == y2) {
                // horizontal edge
                if(py == y1) {
                    // point on horizontal line
                    if(x1 <= x2 && (px >= x1 && px <= x2) || // right or vert
                       x1 >= x2 && (px <= x1 && px >= x2)) { // left or vert
                        // point on edge
                        crosses = -1;
                        break;
                    }
                }
                // ignore other horizontal edges
                continue;
            }
            cx = approx(getX(py, x1, y1, x2, y2), digs);
            if(cx == px) {
                // point on line
                if(y1 < y2 && (py >= y1 && py <= y2) || // upward
                   y1 > y2 && (py <= y1 && py >= y2)) { // downward
                    // point on edge
                    crosses = -1;
                    break;
                }
            }
            if(cx <= px) {
                // no crossing to the right
                continue;
            }
            if(x1 != x2 && (cx < Math.min(x1, x2) || cx > Math.max(x1, x2))) {
                // no crossing
                continue;
            }
            if(y1 < y2 && (py >= y1 && py < y2) || // upward
               y1 > y2 && (py < y1 && py >= y2)) { // downward
                ++crosses;
            }
        }
        var contained = (crosses == -1) ?
            // on edge
            1 :
            // even (out) or odd (in)
            !!(crosses & 1);
 
        return contained;
    },
 
    /**
     * APIMethod: intersects
     * Determine if the input geometry intersects this one.
     *
     * Parameters:
     * geometry - {<OpenLayers.Geometry>} Any type of geometry.
     *
     * Returns:
     * {Boolean} The input geometry intersects this one.
     */
    intersects: function(geometry) {
        var intersect = false;
        if(geometry.CLASS_NAME == "OpenLayers.Geometry.Point") {
            intersect = this.containsPoint(geometry);
        } else if(geometry.CLASS_NAME == "OpenLayers.Geometry.LineString") {
            intersect = geometry.intersects(this);
        } else if(geometry.CLASS_NAME == "OpenLayers.Geometry.LinearRing") {
            intersect = OpenLayers.Geometry.LineString.prototype.intersects.apply(
                this, [geometry]
            );
        } else {
            // check for component intersections<