Upgrade origin-src to google transit feed 1.2.6
[bus.git] / origin-src / transitfeed-1.2.6 / transitfeed / shapelib.py
blob:a/origin-src/transitfeed-1.2.6/transitfeed/shapelib.py -> blob:b/origin-src/transitfeed-1.2.6/transitfeed/shapelib.py
  #!/usr/bin/python2.4
  #
  # Copyright 2007 Google Inc. All Rights Reserved.
  #
  # Licensed under the Apache License, Version 2.0 (the "License");
  # you may not use this file except in compliance with the License.
  # You may obtain a copy of the License at
  #
  # http://www.apache.org/licenses/LICENSE-2.0
  #
  # Unless required by applicable law or agreed to in writing, software
  # distributed under the License is distributed on an "AS IS" BASIS,
  # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  # See the License for the specific language governing permissions and
  # limitations under the License.
   
  """A library for manipulating points and polylines.
   
  This is a library for creating and manipulating points on the unit
  sphere, as an approximate model of Earth. The primary use of this
  library is to make manipulation and matching of polylines easy in the
  transitfeed library.
   
  NOTE: in this library, Earth is modelled as a sphere, whereas
  GTFS specifies that latitudes and longitudes are in WGS84. For the
  purpose of comparing and matching latitudes and longitudes that
  are relatively close together on the surface of the earth, this
  is adequate; for other purposes, this library may not be accurate
  enough.
  """
   
  __author__ = 'chris.harrelson.code@gmail.com (Chris Harrelson)'
   
  import copy
  import decimal
  import heapq
  import math
   
  class ShapeError(Exception):
  """Thrown whenever there is a shape parsing error."""
  pass
   
   
  EARTH_RADIUS_METERS = 6371010.0
   
   
  class Point(object):
  """
  A class representing a point on the unit sphere in three dimensions.
  """
  def __init__(self, x, y, z):
  self.x = x
  self.y = y
  self.z = z
   
  def __hash__(self):
  return hash((self.x, self.y, self.z))
   
  def __cmp__(self, other):
  if not isinstance(other, Point):
  raise TypeError('Point.__cmp__(x,y) requires y to be a "Point", '
  'not a "%s"' % type(other).__name__)
  return cmp((self.x, self.y, self.z), (other.x, other.y, other.z))
   
  def __str__(self):
  return "(%.15f, %.15f, %.15f) " % (self.x, self.y, self.z)
   
  def Norm2(self):
  """
  Returns the L_2 (Euclidean) norm of self.
  """
  sum = self.x * self.x + self.y * self.y + self.z * self.z
  return math.sqrt(float(sum))
   
  def IsUnitLength(self):
  return abs(self.Norm2() - 1.0) < 1e-14
   
  def Plus(self, other):
  """
  Returns a new point which is the pointwise sum of self and other.
  """
  return Point(self.x + other.x,
  self.y + other.y,
  self.z + other.z)
   
  def Minus(self, other):
  """
  Returns a new point which is the pointwise subtraction of other from
  self.
  """
  return Point(self.x - other.x,
  self.y - other.y,
  self.z - other.z)
   
  def DotProd(self, other):
  """
  Returns the (scalar) dot product of self with other.
  """
  return self.x * other.x + self.y * other.y + self.z * other.z
   
  def Times(self, val):
  """
  Returns a new point which is pointwise multiplied by val.
  """
  return Point(self.x * val, self.y * val, self.z * val)
   
  def Normalize(self):
  """
  Returns a unit point in the same direction as self.
  """
  return self.Times(1 / self.Norm2())
   
  def RobustCrossProd(self, other):
  """
  A robust version of cross product. If self and other
  are not nearly the same point, returns the same value
  as CrossProd() modulo normalization. Otherwise returns
  an arbitrary unit point orthogonal to self.
  """
  assert(self.IsUnitLength() and other.IsUnitLength())
  x = self.Plus(other).CrossProd(other.Minus(self))
  if abs(x.x) > 1e-15 or abs(x.y) > 1e-15 or abs(x.z) > 1e-15:
  return x.Normalize()
  else:
  return self.Ortho()
   
  def LargestComponent(self):
  """
  Returns (i, val) where i is the component index (0 - 2)
  which has largest absolute value and val is the value
  of the component.
  """
  if abs(self.x) > abs(self.y):
  if abs(self.x) > abs(self.z):
  return (0, self.x)
  else:
  return (2, self.z)
  else:
  if abs(self.y) > abs(self.z):
  return (1, self.y)
  else:
  return (2, self.z)
   
  def Ortho(self):
  """Returns a unit-length point orthogonal to this point"""
  (index, val) = self.LargestComponent()
  index = index - 1
  if index < 0:
  index = 2
  temp = Point(0.012, 0.053, 0.00457)
  if index == 0:
  temp.x = 1
  elif index == 1:
  temp.y = 1
  elif index == 2:
  temp.z = 1
  return self.CrossProd(temp).Normalize()
   
  def CrossProd(self, other):
  """
  Returns the cross product of self and other.
  """
  return Point(
  self.y * other.z - self.z * other.y,
  self.z * other.x - self.x * other.z,
  self.x * other.y - self.y * other.x)
   
  @staticmethod
  def _approxEq(a, b):
  return abs(a - b) < 1e-11
   
  def Equals(self, other):
  """
  Returns true of self and other are approximately equal.
  """
  return (self._approxEq(self.x, other.x)
  and self._approxEq(self.y, other.y)
  and self._approxEq(self.z, other.z))
   
  def Angle(self, other):
  """
  Returns the angle in radians between self and other.
  """
  return math.atan2(self.CrossProd(other).Norm2(),
  self.DotProd(other))
   
  def ToLatLng(self):
  """
  Returns that latitude and longitude that this point represents
  under a spherical Earth model.
  """
  rad_lat = math.atan2(self.z, math.sqrt(self.x * self.x + self.y * self.y))
  rad_lng = math.atan2(self.y, self.x)
  return (rad_lat * 180.0 / math.pi, rad_lng * 180.0 / math.pi)
   
  @staticmethod
  def FromLatLng(lat, lng):
  """
  Returns a new point representing this latitude and longitude under
  a spherical Earth model.
  """
  phi = lat * (math.pi / 180.0)
  theta = lng * (math.pi / 180.0)
  cosphi = math.cos(phi)
  return Point(math.cos(theta) * cosphi,
  math.sin(theta) * cosphi,
  math.sin(phi))
   
  def GetDistanceMeters(self, other):
  assert(self.IsUnitLength() and other.IsUnitLength())
  return self.Angle(other) * EARTH_RADIUS_METERS
   
   
  def SimpleCCW(a, b, c):
  """
  Returns true if the triangle abc is oriented counterclockwise.
  """
  return c.CrossProd(a).DotProd(b) > 0
   
  def GetClosestPoint(x, a, b):
  """
  Returns the point on the great circle segment ab closest to x.
  """
  assert(x.IsUnitLength())
  assert(a.IsUnitLength())
  assert(b.IsUnitLength())
   
  a_cross_b = a.RobustCrossProd(b)
  # project to the great circle going through a and b
  p = x.Minus(
  a_cross_b.Times(
  x.DotProd(a_cross_b) / a_cross_b.Norm2()))
   
  # if p lies between a and b, return it
  if SimpleCCW(a_cross_b, a, p) and SimpleCCW(p, b, a_cross_b):
  return p.Normalize()
   
  # otherwise return the closer of a or b
  if x.Minus(a).Norm2() <= x.Minus(b).Norm2():
  return a
  else:
  return b
   
   
  class Poly(object):
  """
  A class representing a polyline.
  """
  def __init__(self, points = [], name=None):
  self._points = list(points)
  self._name = name
   
  def AddPoint(self, p):
  """
  Adds a new point to the end of the polyline.
  """
  assert(p.IsUnitLength())
  self._points.append(p)
   
  def GetName(self):
  return self._name
   
  def GetPoint(self, i):
  return self._points[i]
   
  def GetPoints(self):
  return self._points
   
  def GetNumPoints(self):
  return len(self._points)
   
  def _GetPointSafe(self, i):
  try:
  return self.GetPoint(i)
  except IndexError:
  return None
   
  def GetClosestPoint(self, p):
  """
  Returns (closest_p, closest_i), where closest_p is the closest point
  to p on the piecewise linear curve represented by the polyline,
  and closest_i is the index of the point on the polyline just before
  the polyline segment that contains closest_p.
  """
  assert(len(self._points) > 0)
  closest_point = self._points[0]
  closest_i = 0
   
  for i in range(0, len(self._points) - 1):
  (a, b) = (self._points[i], self._points[i+1])
  cur_closest_point = GetClosestPoint(p, a, b)
  if p.Angle(cur_closest_point) < p.Angle(closest_point):
  closest_point = cur_closest_point.Normalize()
  closest_i = i
   
  return (closest_point, closest_i)
   
  def LengthMeters(self):
  """Return length of this polyline in meters."""
  assert(len(self._points) > 0)
  length = 0
  for i in range(0, len(self._points) - 1):
  length += self._points[i].GetDistanceMeters(self._points[i+1])
  return length
   
  def Reversed(self):
  """Return a polyline that is the reverse of this polyline."""
  return Poly(reversed(self.GetPoints()), self.GetName())
   
  def CutAtClosestPoint(self, p):
  """
  Let x be the point on the polyline closest to p. Then
  CutAtClosestPoint returns two new polylines, one representing
  the polyline from the beginning up to x, and one representing
  x onwards to the end of the polyline. x is the first point
  returned in the second polyline.
  """
  (closest, i) = self.GetClosestPoint(p)
   
  tmp = [closest]
  tmp.extend(self._points[i+1:])
  return (Poly(self._points[0:i+1]),
  Poly(tmp))
   
  def GreedyPolyMatchDist(self, shape):
  """
  Tries a greedy matching algorithm to match self to the
  given shape. Returns the maximum distance in meters of
  any point in self to its matched point in shape under the
  algorithm.
   
  Args: shape, a Poly object.
  """
  tmp_shape = Poly(shape.GetPoints())
  max_radius = 0
  for (i, point) in enumerate(self._points):
  tmp_shape = tmp_shape.CutAtClosestPoint(point)[1]
  dist = tmp_shape.GetPoint(0).GetDistanceMeters(point)
  max_radius = max(max_radius, dist)
  return max_radius
   
  @staticmethod
  def MergePolys(polys, merge_point_threshold=10):
  """
  Merge multiple polylines, in the order that they were passed in.
  Merged polyline will have the names of their component parts joined by ';'.
  Example: merging [a,b], [c,d] and [e,f] will result in [a,b,c,d,e,f].
  However if the endpoints of two adjacent polylines are less than
  merge_point_threshold meters apart, we will only use the first endpoint in
  the merged polyline.
  """
  name = ";".join((p.GetName(), '')[p.GetName() is None] for p in polys)
  merged = Poly([], name)
  if polys:
  first_poly = polys[0]
  for p in first_poly.GetPoints():
  merged.AddPoint(p)
  last_point = merged._GetPointSafe(-1)
  for poly in polys[1:]:
  first_point = poly._GetPointSafe(0)
  if (last_point and first_point and
  last_point.GetDistanceMeters(first_point) <= merge_point_threshold):
  points = poly.GetPoints()[1:]
  else:
  points = poly.GetPoints()
  for p in points:
  merged.AddPoint(p)
  last_point = merged._GetPointSafe(-1)
  return merged
   
   
  def __str__(self):
  return self._ToString(str)
   
  def ToLatLngString(self):
  return self._ToString(lambda p: str(p.ToLatLng()))
   
  def _ToString(self, pointToStringFn):
  return "%s: %s" % (self.GetName() or "",
  ", ".join([pointToStringFn(p) for p in self._points]))