Semantic web markup.
[busui.git] / labs / Collection.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
/* Copyright (c) 2006-2010 by OpenLayers Contributors (see authors.txt for 
 * full list of contributors). Published under the Clear BSD license.  
 * See http://svn.openlayers.org/trunk/openlayers/license.txt for the
 * full text of the license. */
 
/**
 * @requires OpenLayers/Geometry.js
 */
 
/**
 * Class: OpenLayers.Geometry.Collection
 * A Collection is exactly what it sounds like: A collection of different 
 * Geometries. These are stored in the local parameter <components> (which
 * can be passed as a parameter to the constructor). 
 * 
 * As new geometries are added to the collection, they are NOT cloned. 
 * When removing geometries, they need to be specified by reference (ie you 
 * have to pass in the *exact* geometry to be removed).
 * 
 * The <getArea> and <getLength> functions here merely iterate through
 * the components, summing their respective areas and lengths.
 *
 * Create a new instance with the <OpenLayers.Geometry.Collection> constructor.
 *
 * Inerhits from:
 *  - <OpenLayers.Geometry> 
 */
OpenLayers.Geometry.Collection = OpenLayers.Class(OpenLayers.Geometry, {
 
    /**
     * APIProperty: components
     * {Array(<OpenLayers.Geometry>)} The component parts of this geometry
     */
    components: null,
    
    /**
     * Property: componentTypes
     * {Array(String)} An array of class names representing the types of
     * components that the collection can include.  A null value means the
     * component types are not restricted.
     */
    componentTypes: null,
 
    /**
     * Constructor: OpenLayers.Geometry.Collection
     * Creates a Geometry Collection -- a list of geoms.
     *
     * Parameters: 
     * components - {Array(<OpenLayers.Geometry>)} Optional array of geometries
     *
     */
    initialize: function (components) {
        OpenLayers.Geometry.prototype.initialize.apply(this, arguments);
        this.components = [];
        if (components != null) {
            this.addComponents(components);
        }
    },
 
    /**
     * APIMethod: destroy
     * Destroy this geometry.
     */
    destroy: function () {
        this.components.length = 0;
        this.components = null;
        OpenLayers.Geometry.prototype.destroy.apply(this, arguments);
    },
 
    /**
     * APIMethod: clone
     * Clone this geometry.
     *
     * Returns:
     * {<OpenLayers.Geometry.Collection>} An exact clone of this collection
     */
    clone: function() {
        var geometry = eval("new " + this.CLASS_NAME + "()");
        for(var i=0, len=this.components.length; i<len; i++) {
            geometry.addComponent(this.components[i].clone());
        }
        
        // catch any randomly tagged-on properties
        OpenLayers.Util.applyDefaults(geometry, this);
        
        return geometry;
    },
 
    /**
     * Method: getComponentsString
     * Get a string representing the components for this collection
     * 
     * Returns:
     * {String} A string representation of the components of this geometry
     */
    getComponentsString: function(){
        var strings = [];
        for(var i=0, len=this.components.length; i<len; i++) {
            strings.push(this.components[i].toShortString()); 
        }
        return strings.join(",");
    },
 
    /**
     * APIMethod: calculateBounds
     * Recalculate the bounds by iterating through the components and 
     * calling calling extendBounds() on each item.
     */
    calculateBounds: function() {
        this.bounds = null;
        if ( this.components && this.components.length > 0) {
            this.setBounds(this.components[0].getBounds());
            for (var i=1, len=this.components.length; i<len; i++) {
                this.extendBounds(this.components[i].getBounds());
            }
        }
    },
 
    /**
     * APIMethod: addComponents
     * Add components to this geometry.
     *
     * Parameters:
     * components - {Array(<OpenLayers.Geometry>)} An array of geometries to add
     */
    addComponents: function(components){
        if(!(components instanceof Array)) {
            components = [components];
        }
        for(var i=0, len=components.length; i<len; i++) {
            this.addComponent(components[i]);
        }
    },
 
    /**
     * Method: addComponent
     * Add a new component (geometry) to the collection.  If this.componentTypes
     * is set, then the component class name must be in the componentTypes array.
     *
     * The bounds cache is reset.
     * 
     * Parameters:
     * component - {<OpenLayers.Geometry>} A geometry to add
     * index - {int} Optional index into the array to insert the component
     *
     * Returns:
     * {Boolean} The component geometry was successfully added
     */    
    addComponent: function(component, index) {
        var added = false;
        if(component) {
            if(this.componentTypes == null ||
               (OpenLayers.Util.indexOf(this.componentTypes,
                                        component.CLASS_NAME) > -1)) {
 
                if(index != null && (index < this.components.length)) {
                    var components1 = this.components.slice(0, index);
                    var components2 = this.components.slice(index, 
                                                           this.components.length);
                    components1.push(component);
                    this.components = components1.concat(components2);
                } else {
                    this.components.push(component);
                }
                component.parent = this;
                this.clearBounds();
                added = true;
            }
        }
        return added;
    },
    
    /**
     * APIMethod: removeComponents
     * Remove components from this geometry.
     *
     * Parameters:
     * components - {Array(<OpenLayers.Geometry>)} The components to be removed
     */
    removeComponents: function(components) {
        if(!(components instanceof Array)) {
            components = [components];
        }
        for(var i=components.length-1; i>=0; --i) {
            this.removeComponent(components[i]);
        }
    },
    
    /**
     * Method: removeComponent
     * Remove a component from this geometry.
     *
     * Parameters:
     * component - {<OpenLayers.Geometry>} 
     */
    removeComponent: function(component) {
        
        OpenLayers.Util.removeItem(this.components, component);
        
        // clearBounds() so that it gets recalculated on the next call
        // to this.getBounds();
        this.clearBounds();
    },
 
    /**
     * APIMethod: getLength
     * Calculate the length of this geometry
     *
     * Returns:
     * {Float} The length of the geometry
     */
    getLength: function() {
        var length = 0.0;
        for (var i=0, len=this.components.length; i<len; i++) {
            length += this.components[i].getLength();
        }
        return length;
    },
    
    /**
     * APIMethod: getArea
     * Calculate the area of this geometry. Note how this function is overridden
     * in <OpenLayers.Geometry.Polygon>.
     *
     * Returns:
     * {Float} The area of the collection by summing its parts
     */
    getArea: function() {
        var area = 0.0;
        for (var i=0, len=this.components.length; i<len; i++) {
            area += this.components[i].getArea();
        }
        return area;
    },
 
    /** 
     * APIMethod: getGeodesicArea
     * Calculate the approximate area of the polygon were it projected onto
     *     the earth.
     *
     * Parameters:
     * projection - {<OpenLayers.Projection>} The spatial reference system
     *     for the geometry coordinates.  If not provided, Geographic/WGS84 is
     *     assumed.
     * 
     * Reference:
     * Robert. G. Chamberlain and William H. Duquette, "Some Algorithms for
     *     Polygons on a Sphere", JPL Publication 07-03, Jet Propulsion
     *     Laboratory, Pasadena, CA, June 2007 http://trs-new.jpl.nasa.gov/dspace/handle/2014/40409
     *
     * Returns:
     * {float} The approximate geodesic area of the geometry in square meters.
     */
    getGeodesicArea: function(projection) {
        var area = 0.0;
        for(var i=0, len=this.components.length; i<len; i++) {
            area += this.components[i].getGeodesicArea(projection);
        }
        return area;
    },
    
    /**
     * APIMethod: getCentroid
     *
     * Compute the centroid for this geometry collection.
     *
     * Parameters:
     * weighted - {Boolean} Perform the getCentroid computation recursively,
     * returning an area weighted average of all geometries in this collection.
     *
     * Returns:
     * {<OpenLayers.Geometry.Point>} The centroid of the collection
     */
    getCentroid: function(weighted) {
        if (!weighted) {
            return this.components.length && this.components[0].getCentroid();
        }
        var len = this.components.length;
        if (!len) {
            return false;
        }
        
        var areas = [];
        var centroids = [];
        var areaSum = 0;
        var minArea = Number.MAX_VALUE;
        var component;
        for (var i=0; i<len; ++i) {
            component = this.components[i];
            var area = component.getArea();
            var centroid = component.getCentroid(true);
            if (isNaN(area) || isNaN(centroid.x) || isNaN(centroid.y)) {
                continue;
            }
            areas.push(area);
            areaSum += area;
            minArea = (area < minArea && area > 0) ? area : minArea;
            centroids.push(centroid);
        }
        len = areas.length;
        if (areaSum === 0) {
            // all the components in this collection have 0 area
            // probably a collection of points -- weight all the points the same
            for (var i=0; i<len; ++i) {
                areas[i] = 1;
            }
            areaSum = areas.length;
        } else {
            // normalize all the areas where the smallest area will get
            // a value of 1
            for (var i=0; i<len; ++i) {
                areas[i] /= minArea;
            }
            areaSum /= minArea;
        }
        
        var xSum = 0, ySum = 0, centroid, area;
        for (var i=0; i<len; ++i) {
            centroid = centroids[i];
            area = areas[i];
            xSum += centroid.x * area;
            ySum += centroid.y * area;
        }
        
        return new OpenLayers.Geometry.Point(xSum/areaSum, ySum/areaSum);
    },
 
    /**
     * APIMethod: getGeodesicLength
     * Calculate the approximate length of the geometry were it projected onto
     *     the earth.
     *
     * projection - {<OpenLayers.Projection>} The spatial reference system
     *     for the geometry coordinates.  If not provided, Geographic/WGS84 is
     *     assumed.
     * 
     * Returns:
     * {Float} The appoximate geodesic length of the geometry in meters.
     */
    getGeodesicLength: function(projection) {
        var length = 0.0;
        for(var i=0, len=this.components.length; i<len; i++) {
            length += this.components[i].getGeodesicLength(projection);
        }
        return length;
    },
 
    /**
     * APIMethod: move
     * Moves a geometry by the given displacement along positive x and y axes.
     *     This modifies the position of the geometry and clears the cached
     *     bounds.
     *
     * Parameters:
     * x - {Float} Distance to move geometry in positive x direction. 
     * y - {Float} Distance to move geometry in positive y direction.
     */
    move: function(x, y) {
        for(var i=0, len=this.components.length; i<len; i++) {
            this.components[i].move(x, y);
        }
    },
 
    /**
     * APIMethod: rotate
     * Rotate a geometry around some origin
     *
     * Parameters:
     * angle - {Float} Rotation angle in degrees (measured counterclockwise
     *                 from the positive x-axis)
     * origin - {<OpenLayers.Geometry.Point>} Center point for the rotation
     */
    rotate: function(angle, origin) {
        for(var i=0, len=this.components.length; i<len; ++i) {
            this.components[i].rotate(angle, origin);
        }
    },
 
    /**
     * APIMethod: resize
     * Resize a geometry relative to some origin.  Use this method to apply
     *     a uniform scaling to a geometry.
     *
     * Parameters:
     * scale - {Float} Factor by which to scale the geometry.  A scale of 2
     *                 doubles the size of the geometry in each dimension
     *                 (lines, for example, will be twice as long, and polygons
     *                 will have four times the area).
     * origin - {<OpenLayers.Geometry.Point>} Point of origin for resizing
     * ratio - {Float} Optional x:y ratio for resizing.  Default ratio is 1.
     * 
     * Returns:
     * {OpenLayers.Geometry} - The current geometry. 
     */
    resize: function(scale, origin, ratio) {
        for(var i=0; i<this.components.length; ++i) {
            this.components[i].resize(scale, origin, ratio);
        }
        return this;
    },
 
    /**
     * APIMethod: distanceTo
     * Calculate the closest distance between two geometries (on the x-y plane).
     *
     * Parameters:
     * geometry - {<OpenLayers.Geometry>} The target geometry.
     * options - {Object} Optional properties for configuring the distance
     *     calculation.
     *
     * Valid options:
     * details - {Boolean} Return details from the distance calculation.
     *     Default is false.
     * edge - {Boolean} Calculate the distance from this geometry to the
     *     nearest edge of the target geometry.  Default is true.  If true,
     *     calling distanceTo from a geometry that is wholly contained within
     *     the target will result in a non-zero distance.  If false, whenever
     *     geometries intersect, calling distanceTo will return 0.  If false,
     *     details cannot be returned.
     *
     * Returns:
     * {Number | Object} The distance between this geometry and the target.
     *     If details is true, the return will be an object with distance,
     *     x0, y0, x1, and y1 properties.  The x0 and y0 properties represent
     *     the coordinates of the closest point on this geometry. The x1 and y1
     *     properties represent the coordinates of the closest point on the
     *     target geometry.
     */
    distanceTo: function(geometry, options) {
        var edge = !(options && options.edge === false);
        var details = edge && options && options.details;
        var result, best, distance;
        var min = Number.POSITIVE_INFINITY;
        for(var i=0, len=this.components.length; i<len; ++i) {
            result = this.components[i].distanceTo(geometry, opti