Graphing dataset downloads.
[ckanext-ga-report.git] / ckanext / ga_report / controller.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
import re
import csv
import sys
import json
import logging
import operator
import collections
from ckan.lib.base import (BaseController, c, g, render, request, response, abort)
 
import sqlalchemy
from sqlalchemy import func, cast, Integer
import ckan.model as model
from ga_model import GA_Url, GA_Stat, GA_ReferralStat, GA_Publisher
 
log = logging.getLogger('ckanext.ga-report')
 
DOWNLOADS_AVAILABLE_FROM = '2012-12'
 
def _get_month_name(strdate):
    import calendar
    from time import strptime
    d = strptime(strdate, '%Y-%m')
    return '%s %s' % (calendar.month_name[d.tm_mon], d.tm_year)
 
def _get_unix_epoch(strdate):
    from time import strptime,mktime
    d = strptime(strdate, '%Y-%m')
    return int(mktime(d))
 
def _month_details(cls, stat_key=None):
    '''
    Returns a list of all the periods for which we have data, unfortunately
    knows too much about the type of the cls being passed as GA_Url has a
    more complex query
 
    This may need extending if we add a period_name to the stats
    '''
    months = []
    day = None
 
    q = model.Session.query(cls.period_name,cls.period_complete_day)\
        .filter(cls.period_name!='All').distinct(cls.period_name)
    if stat_key:
        q=  q.filter(cls.stat_name==stat_key)
 
    vals = q.order_by("period_name desc").all()
 
    if vals and vals[0][1]:
        day = int(vals[0][1])
        ordinal = 'th' if 11 <= day <= 13 \
            else {1:'st',2:'nd',3:'rd'}.get(day % 10, 'th')
        day = "{day}{ordinal}".format(day=day, ordinal=ordinal)
 
    for m in vals:
        months.append( (m[0], _get_month_name(m[0])))
 
    return months, day
 
 
class GaReport(BaseController):
 
    def csv(self, month):
        import csv
 
        q = model.Session.query(GA_Stat).filter(GA_Stat.stat_name!='Downloads')
        if month != 'all':
            q = q.filter(GA_Stat.period_name==month)
        entries = q.order_by('GA_Stat.period_name, GA_Stat.stat_name, GA_Stat.key').all()
 
        response.headers['Content-Type'] = "text/csv; charset=utf-8"
        response.headers['Content-Disposition'] = str('attachment; filename=stats_%s.csv' % (month,))
 
        writer = csv.writer(response)
        writer.writerow(["Period", "Statistic", "Key", "Value"])
 
        for entry in entries:
            writer.writerow([entry.period_name.encode('utf-8'),
                             entry.stat_name.encode('utf-8'),
                             entry.key.encode('utf-8'),
                             entry.value.encode('utf-8')])
 
 
    def index(self):
 
        # Get the month details by fetching distinct values and determining the
        # month names from the values.
        c.months, c.day = _month_details(GA_Stat)
 
        # Work out which month to show, based on query params of the first item
        c.month_desc = 'all months'
        c.month = request.params.get('month', '')
        if c.month:
            c.month_desc = ''.join([m[1] for m in c.months if m[0]==c.month])
 
        q = model.Session.query(GA_Stat).\
            filter(GA_Stat.stat_name=='Totals')
        if c.month:
            q = q.filter(GA_Stat.period_name==c.month)
        entries = q.order_by('ga_stat.key').all()
 
        def clean_key(key, val):
            if key in ['Average time on site', 'Pages per visit', 'New visits', 'Bounce rate (home page)']:
                val =  "%.2f" % round(float(val), 2)
                if key == 'Average time on site':
                    mins, secs = divmod(float(val), 60)
                    hours, mins = divmod(mins, 60)
                    val = '%02d:%02d:%02d (%s seconds) ' % (hours, mins, secs, val)
                if key in ['New visits','Bounce rate (home page)']:
                    val = "%s%%" % val
            if key in ['Total page views', 'Total visits']:
                val = int(val)
 
            return key, val
 
        # Query historic values for sparkline rendering
        sparkline_query = model.Session.query(GA_Stat)\
                .filter(GA_Stat.stat_name=='Totals')\
                .order_by(GA_Stat.period_name)
        sparkline_data = {}
        for x in sparkline_query:
            sparkline_data[x.key] = sparkline_data.get(x.key,[])
            key, val = clean_key(x.key,float(x.value))
            tooltip = '%s: %s' % (_get_month_name(x.period_name), val)
            sparkline_data[x.key].append( (tooltip,x.value) )
        # Trim the latest month, as it looks like a huge dropoff
        for key in sparkline_data:
            sparkline_data[key] = sparkline_data[key][:-1]
 
        c.global_totals = []
        if c.month:
            for e in entries:
                key, val = clean_key(e.key, e.value)
                sparkline = sparkline_data[e.key]
                c.global_totals.append((key, val, sparkline))
        else:
            d = collections.defaultdict(list)
            for e in entries:
                d[e.key].append(float(e.value))
            for k, v in d.iteritems():
                if k in ['Total page views', 'Total visits']:
                    v = sum(v)
                else:
                    v = float(sum(v))/float(len(v))
                sparkline = sparkline_data[k]
                key, val = clean_key(k,v)
 
                c.global_totals.append((key, val, sparkline))
        # Sort the global totals into a more pleasant order
        def sort_func(x):
            key = x[0]
            total_order = ['Total page views','Total visits','Pages per visit']
            if key in total_order:
                return total_order.index(key)
            return 999
        c.global_totals = sorted(c.global_totals, key=sort_func)
 
        keys = {
            'Browser versions': 'browser_versions',
            'Browsers': 'browsers',
            'Operating Systems versions': 'os_versions',
            'Operating Systems': 'os',
            'Social sources': 'social_networks',
            'Languages': 'languages',
            'Country': 'country'
        }
 
        def shorten_name(name, length=60):
            return (name[:length] + '..') if len(name) > 60 else name
 
        def fill_out_url(url):
            import urlparse
            return urlparse.urljoin(g.site_url, url)
 
        c.social_referrer_totals, c.social_referrers = [], []
        q = model.Session.query(GA_ReferralStat)
        q = q.filter(GA_ReferralStat.period_name==c.month) if c.month else q
        q = q.order_by('ga_referrer.count::int desc')
        for entry in q.all():
            c.social_referrers.append((shorten_name(entry.url), fill_out_url(entry.url),
                                       entry.source,entry.count))
 
        q = model.Session.query(GA_ReferralStat.url,
                                func.sum(GA_ReferralStat.count).label('count'))
        q = q.filter(GA_ReferralStat.period_name==c.month) if c.month else q
        q = q.order_by('count desc').group_by(GA_ReferralStat.url)
        for entry in q.all():
            c.social_referrer_totals.append((shorten_name(entry[0]), fill_out_url(entry[0]),'',
                                            entry[1]))
 
        for k, v in keys.iteritems():
            q = model.Session.query(GA_Stat).\
                filter(GA_Stat.stat_name==k).\
                order_by(GA_Stat.period_name)
            # Run the query on all months to gather graph data
            series = {}
            x_axis = set()
            for stat in q:
                x_val = _get_unix_epoch(stat.period_name)
                series[ stat.key ] = series.get(stat.key,{})
                series[ stat.key ][x_val] = float(stat.value)
                x_axis.add(x_val)
            # Common x-axis for all series. Exclude this month (incomplete data)
            x_axis = sorted(list(x_axis))[:-1]
            # Buffer a rickshaw dataset from the series
            def create_graph(series_name, series_data):
                return { 
                    'name':series_name, 
                    'data':[ {'x':x,'y':series_data.get(x,0)} for x in x_axis ]
                    }
            rickshaw = [ create_graph(name,data) for name, data in series.items() ]
            rickshaw = sorted(rickshaw,key=lambda x:x['data'][-1]['y'])
            setattr(c, v+'_graph', json.dumps(rickshaw))
 
            # Buffer the tabular data
            if c.month:
                entries = []
                q = q.filter(GA_Stat.period_name==c.month).\
                          order_by('ga_stat.value::int desc')
 
            d = collections.defaultdict(int)
            for e in q.all():
                d[e.key] += int(e.value)
            entries = []
            for key, val in d.iteritems():
                entries.append((key,val,))
            entries = sorted(entries, key=operator.itemgetter(1), reverse=True)
 
            # Get the total for each set of values and then set the value as
            # a percentage of the total
            if k == 'Social sources':
                total = sum([x for n,x,graph in c.global_totals if n == 'Total visits'])
            else:
                total = sum([num for _,num in entries])
            setattr(c, v, [(k,_percent(v,total)) for k,v in entries ])
 
        return render('ga_report/site/index.html')
 
 
class GaDatasetReport(BaseController):
    """
    Displays the pageview and visit count for datasets
    with options to filter by publisher and time period.
    """
    def publisher_csv(self, month):
        '''
        Returns a CSV of each publisher with the total number of dataset
        views & visits.
        '''
        c.month = month if not month == 'all' else ''
        response.headers['Content-Type'] = "text/csv; charset=utf-8"
        response.headers['Content-Disposition'] = str('attachment; filename=publishers_%s.csv' % (month,))
 
        writer = csv.writer(response)
        writer.writerow(["Publisher Title", "Publisher Name", "Views", "Visits", "Period Name"])
 
        for publisher,view,visit in _get_top_publishers(None):
            writer.writerow([publisher.title.encode('utf-8'),
                             publisher.name.encode('utf-8'),
                             view,
                             visit,
                             month])
 
    def dataset_csv(self, id='all', month='all'):
        '''
        Returns a CSV with the number of views & visits for each dataset.
 
        :param id: A Publisher ID or None if you want for all
        :param month: The time period, or 'all'
        '''
        c.month = month if not month == 'all' else ''
        if id != 'all':
            c.publisher = model.Group.get(id)
            if not c.publisher:
                abort(404, 'A publisher with that name could not be found')
 
        packages, graph_data = self._get_packages(c.publisher)
        response.headers['Content-Type'] = "text/csv; charset=utf-8"
        response.headers['Content-Disposition'] = \
            str('attachment; filename=datasets_%s_%s.csv' % (c.publisher_name, month,))
 
        writer = csv.writer(response)
        writer.writerow(["Dataset Title", "Dataset Name", "Views", "Visits", "Resource downloads", "Period Name"])
 
        for package,view,visit,downloads in packages:
            writer.writerow([package.title.encode('utf-8'),
                             package.name.encode('utf-8'),
                             view,
                             visit,
                             downloads,
                             month])
 
    def publishers(self):
        '''A list of publishers and the number of views/visits for each'''
 
        # Get the month details by fetching distinct values and determining the
        # month names from the values.
        c.months, c.day = _month_details(GA_Url)
 
        # Work out which month to show, based on query params of the first item
        c.month = request.params.get('month', '')
        c.month_desc = 'all months'
        if c.month:
            c.month_desc = ''.join([m[1] for m in c.months if m[0]==c.month])
 
        c.top_publishers = _get_top_publishers()
        return render('ga_report/publisher/index.html')
 
    def _get_packages(self, publisher=None, count=-1):
        '''Returns the datasets in order of views'''
        have_download_data = True
        month = c.month or 'All'
        if month != 'All':
            have_download_data = month >= DOWNLOADS_AVAILABLE_FROM
 
        q = model.Session.query(GA_Url,model.Package)\
            .filter(model.Package.name==GA_Url.package_id)\
            .filter(GA_Url.url.like('/dataset/%'))
        if publisher:
            q = q.filter(GA_Url.department_id==publisher.name)
        q = q.filter(GA_Url.period_name==month)
        q = q.order_by('ga_url.pageviews::int desc')
        graph_data = []
        top_packages = []
        if count == -1:
            entries = q.all()
        else:
            entries = q.limit(count)
 
        for entry,package in entries:
            if package:
                graph = []
                # Downloads ....
                if have_download_data:
                    dls = model.Session.query(GA_Stat).\
                        filter(GA_Stat.stat_name=='Downloads').\
                        filter(GA_Stat.key==package.name)
                    if month != 'All':  # Fetch everything unless the month is specific
                        dls = dls.filter(GA_Stat.period_name==month)
                    downloads = 0
                    for x in dls:
                        graph.append({ 'x': _get_unix_epoch(d.period_name), 'y': int(d.value)})
                        downloads += int(d.value)
                else:
                    downloads = 'No data'
                top_packages.append((package, entry.pageviews, entry.visits, downloads, graph_data))
                graph_data.append({'name':package.title, 'data':graph})
            else:
                log.warning('Could not find package associated package')
 
        return top_packages,graph_data
 
    def read(self):
        '''
        Lists the most popular datasets across all publishers
        '''
        return self.read_publisher(None)
 
    def read_publisher(self, id):
        '''
        Lists the most popular datasets for a publisher (or across all publishers)
        '''
        count = 20
 
        c.publishers = _get_publishers()
 
        id = request.params.get('publisher', id)
        if id and id != 'all':
            c.publisher = model.Group.get(id)
            if not c.publisher:
                abort(404, 'A publisher with that name could not be found')
            c.publisher_name = c.publisher.name
        c.top_packages = [] # package, dataset_views in c.top_packages
 
        # Get the month details by fetching distinct values and determining the
        # month names from the values.
        c.months, c.day = _month_details(GA_Url)
 
        # Work out which month to show, based on query params of the first item
        c.month = request.params.get('month', '')
        if not c.month:
            c.month_desc = 'all months'
        else:
            c.month_desc = ''.join([m[1] for m in c.months if m[0]==c.month])
 
        month = c.month or 'All'
        c.publisher_page_views = 0
        q = model.Session.query(GA_Url).\
            filter(GA_Url.url=='/publisher/%s' % c.publisher_name)
        entry = q.filter(GA_Url.period_name==c.month).first()
        c.publisher_page_views = entry.pageviews if entry else 0
 
        c.top_packages, graph_data = self._get_packages(c.publisher, 20)
        c.graph_data = json.dumps(graph_data)
 
        return render('ga_report/publisher/read.html')
 
def _get_top_publishers(limit=20):
    '''
    Returns a list of the top 20 publishers by dataset visits.
    (The number to show can be varied with 'limit')
    '''
    month = c.month or 'All'
    connection = model.Session.connection()
    q = """
        select department_id, sum(pageviews::int) views, sum(visits::int) visits
        from ga_url
        where department_id <> ''
          and package_id <> ''
          and url like '/dataset/%%'
          and period_name=%s
        group by department_id order by views desc
        """
    if limit:
        q = q + " limit %s;" % (limit)
 
    top_publishers = []
    res = connection.execute(q, month)
    for row in res:
        g = model.Group.get(row[0])
        if g:
            top_publishers.append((g, row[1], row[2]))
    return top_publishers
 
 
def _get_publishers():
    '''
    Returns a list of all publishers. Each item is a tuple:
      (name, title)
    '''
    publishers = []
    for pub in model.Session.query(model.Group).\
               filter(model.Group.type=='publisher').\
               filter(model.Group.state=='active').\
               order_by(model.Group.name):
        publishers.append((pub.name, pub.title))
    return publishers
 
def _percent(num, total):
    p = 100 * float(num)/float(total)
    return "%.2f%%" % round(p, 2)