// seedrandom.js version 2.0. // Author: David Bau 4/2/2011 // // Defines a method Math.seedrandom() that, when called, substitutes // an explicitly seeded RC4-based algorithm for Math.random(). Also // supports automatic seeding from local or network sources of entropy. // // Usage: // // // // Math.seedrandom('yipee'); Sets Math.random to a function that is // initialized using the given explicit seed. // // Math.seedrandom(); Sets Math.random to a function that is // seeded using the current time, dom state, // and other accumulated local entropy. // The generated seed string is returned. // // Math.seedrandom('yowza', true); // Seeds using the given explicit seed mixed // together with accumulated entropy. // // // Seeds using physical random bits downloaded // from random.org. // // Seeds using urandom bits from call.jsonlib.com, // which is faster than random.org. // // Examples: // // Math.seedrandom("hello"); // Use "hello" as the seed. // document.write(Math.random()); // Always 0.5463663768140734 // document.write(Math.random()); // Always 0.43973793770592234 // var rng1 = Math.random; // Remember the current prng. // // var autoseed = Math.seedrandom(); // New prng with an automatic seed. // document.write(Math.random()); // Pretty much unpredictable. // // Math.random = rng1; // Continue "hello" prng sequence. // document.write(Math.random()); // Always 0.554769432473455 // // Math.seedrandom(autoseed); // Restart at the previous seed. // document.write(Math.random()); // Repeat the 'unpredictable' value. // // Notes: // // Each time seedrandom('arg') is called, entropy from the passed seed // is accumulated in a pool to help generate future seeds for the // zero-argument form of Math.seedrandom, so entropy can be injected over // time by calling seedrandom with explicit data repeatedly. // // On speed - This javascript implementation of Math.random() is about // 3-10x slower than the built-in Math.random() because it is not native // code, but this is typically fast enough anyway. Seeding is more expensive, // especially if you use auto-seeding. Some details (timings on Chrome 4): // // Our Math.random() - avg less than 0.002 milliseconds per call // seedrandom('explicit') - avg less than 0.5 milliseconds per call // seedrandom('explicit', true) - avg less than 2 milliseconds per call // seedrandom() - avg about 38 milliseconds per call // // LICENSE (BSD): // // Copyright 2010 David Bau, all rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // 1. Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // // 2. Redistributions in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in the // documentation and/or other materials provided with the distribution. // // 3. Neither the name of this module nor the names of its contributors may // be used to endorse or promote products derived from this software // without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // /** * All code is in an anonymous closure to keep the global namespace clean. * * @param {number=} overflow * @param {number=} startdenom */ (function (pool, math, width, chunks, significance, overflow, startdenom) { // // seedrandom() // This is the seedrandom function described above. // math['seedrandom'] = function seedrandom(seed, use_entropy) { var key = []; var arc4; // Flatten the seed string or build one from local entropy if needed. seed = mixkey(flatten( use_entropy ? [seed, pool] : arguments.length ? seed : [new Date().getTime(), pool, window], 3), key); // Use the seed to initialize an ARC4 generator. arc4 = new ARC4(key); // Mix the randomness into accumulated entropy. mixkey(arc4.S, pool); // Override Math.random // This function returns a random double in [0, 1) that contains // randomness in every bit of the mantissa of the IEEE 754 value. math['random'] = function random() { // Closure to return a random double: var n = arc4.g(chunks); // Start with a numerator n < 2 ^ 48 var d = startdenom; // and denominator d = 2 ^ 48. var x = 0; // and no 'extra last byte'. while (n < significance) { // Fill up all significant digits by n = (n + x) * width; // shifting numerator and d *= width; // denominator and generating a x = arc4.g(1); // new least-significant-byte. } while (n >= overflow) { // To avoid rounding up, before adding n /= 2; // last byte, shift everything d /= 2; // right using integer math until x >>>= 1; // we have exactly the desired bits. } return (n + x) / d; // Form the number within [0, 1). }; // Return the seed that was used return seed; }; // // ARC4 // // An ARC4 implementation. The constructor takes a key in the form of // an array of at most (width) integers that should be 0 <= x < (width). // // The g(count) method returns a pseudorandom integer that concatenates // the next (count) outputs from ARC4. Its return value is a number x // that is in the range 0 <= x < (width ^ count). // /** @constructor */ function ARC4(key) { var t, u, me = this, keylen = key.length; var i = 0, j = me.i = me.j = me.m = 0; me.S = []; me.c = []; // The empty key [] is treated as [0]. if (!keylen) { key = [keylen++]; } // Set up S using the standard key scheduling algorithm. while (i < width) { me.S[i] = i++; } for (i = 0; i < width; i++) { t = me.S[i]; j = lowbits(j + t + key[i % keylen]); u = me.S[j]; me.S[i] = u; me.S[j] = t; } // The "g" method returns the next (count) outputs as one number. me.g = function getnext(count) { var s = me.S; var i = lowbits(me.i + 1); var t = s[i]; var j = lowbits(me.j + t); var u = s[j]; s[i] = u; s[j] = t; var r = s[lowbits(t + u)]; while (--count) { i = lowbits(i + 1); t = s[i]; j = lowbits(j + t); u = s[j]; s[i] = u; s[j] = t; r = r * width + s[lowbits(t + u)]; } me.i = i; me.j = j; return r; }; // For robust unpredictability discard an initial batch of values. // See http://www.rsa.com/rsalabs/node.asp?id=2009 me.g(width); } // // flatten() // Converts an object tree to nested arrays of strings. // /** @param {Object=} result * @param {string=} prop * @param {string=} typ */ function flatten(obj, depth, result, prop, typ) { result = []; typ = typeof(obj); if (depth && typ == 'object') { for (prop in obj) { if (prop.indexOf('S') < 5) { // Avoid FF3 bug (local/sessionStorage) try { result.push(flatten(obj[prop], depth - 1)); } catch (e) {} } } } return (result.length ? result : obj + (typ != 'string' ? '\0' : '')); } // // mixkey() // Mixes a string seed into a key that is an array of integers, and // returns a shortened string seed that is equivalent to the result key. // /** @param {number=} smear * @param {number=} j */ function mixkey(seed, key, smear, j) { seed += ''; // Ensure the seed is a string smear = 0; for (j = 0; j < seed.length; j++) { key[lowbits(j)] = lowbits((smear ^= key[lowbits(j)] * 19) + seed.charCodeAt(j)); } seed = ''; for (j in key) { seed += String.fromCharCode(key[j]); } return seed; } // // lowbits() // A quick "n mod width" for width a power of 2. // function lowbits(n) { return n & (width - 1); } // // The following constants are related to IEEE 754 limits. // startdenom = math.pow(width, chunks); significance = math.pow(2, significance); overflow = significance * 2; // // When seedrandom.js is loaded, we immediately mix a few bits // from the built-in RNG into the entropy pool. Because we do // not want to intefere with determinstic PRNG state later, // seedrandom will not call math.random on its own again after // initialization. // mixkey(math.random(), pool); // End anonymous scope, and pass initial values. })( [], // pool: entropy pool starts empty Math, // math: package containing random, pow, and seedrandom 256, // width: each RC4 output is 0 <= x < 256 6, // chunks: at least six RC4 outputs for each double 52 // significance: there are 52 significant digits in a double );