html5 boiler plate
[scannr.git] / js / flotr2 / examples / lib / randomseed.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
// seedrandom.js version 2.0.
// Author: David Bau 4/2/2011
//
// Defines a method Math.seedrandom() that, when called, substitutes
// an explicitly seeded RC4-based algorithm for Math.random().  Also
// supports automatic seeding from local or network sources of entropy.
//
// Usage:
//
//   <script src=http://davidbau.com/encode/seedrandom-min.js></script>
//
//   Math.seedrandom('yipee'); Sets Math.random to a function that is
//                             initialized using the given explicit seed.
//
//   Math.seedrandom();        Sets Math.random to a function that is
//                             seeded using the current time, dom state,
//                             and other accumulated local entropy.
//                             The generated seed string is returned.
//
//   Math.seedrandom('yowza', true);
//                             Seeds using the given explicit seed mixed
//                             together with accumulated entropy.
//
//   <script src="http://bit.ly/srandom-512"></script>
//                             Seeds using physical random bits downloaded
//                             from random.org.
//
//   <script src="https://jsonlib.appspot.com/urandom?callback=Math.seedrandom">
//   </script>                 Seeds using urandom bits from call.jsonlib.com,
//                             which is faster than random.org.
//
// Examples:
//
//   Math.seedrandom("hello");            // Use "hello" as the seed.
//   document.write(Math.random());       // Always 0.5463663768140734
//   document.write(Math.random());       // Always 0.43973793770592234
//   var rng1 = Math.random;              // Remember the current prng.
//
//   var autoseed = Math.seedrandom();    // New prng with an automatic seed.
//   document.write(Math.random());       // Pretty much unpredictable.
//
//   Math.random = rng1;                  // Continue "hello" prng sequence.
//   document.write(Math.random());       // Always 0.554769432473455
//
//   Math.seedrandom(autoseed);           // Restart at the previous seed.
//   document.write(Math.random());       // Repeat the 'unpredictable' value.
//
// Notes:
//
// Each time seedrandom('arg') is called, entropy from the passed seed
// is accumulated in a pool to help generate future seeds for the
// zero-argument form of Math.seedrandom, so entropy can be injected over
// time by calling seedrandom with explicit data repeatedly.
//
// On speed - This javascript implementation of Math.random() is about
// 3-10x slower than the built-in Math.random() because it is not native
// code, but this is typically fast enough anyway.  Seeding is more expensive,
// especially if you use auto-seeding.  Some details (timings on Chrome 4):
//
// Our Math.random()            - avg less than 0.002 milliseconds per call
// seedrandom('explicit')       - avg less than 0.5 milliseconds per call
// seedrandom('explicit', true) - avg less than 2 milliseconds per call
// seedrandom()                 - avg about 38 milliseconds per call
//
// LICENSE (BSD):
//
// Copyright 2010 David Bau, all rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
// 
//   1. Redistributions of source code must retain the above copyright
//      notice, this list of conditions and the following disclaimer.
//
//   2. Redistributions in binary form must reproduce the above copyright
//      notice, this list of conditions and the following disclaimer in the
//      documentation and/or other materials provided with the distribution.
// 
//   3. Neither the name of this module nor the names of its contributors may
//      be used to endorse or promote products derived from this software
//      without specific prior written permission.
// 
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
/**
 * All code is in an anonymous closure to keep the global namespace clean.
 *
 * @param {number=} overflow 
 * @param {number=} startdenom
 */
(function (pool, math, width, chunks, significance, overflow, startdenom) {
 
 
//
// seedrandom()
// This is the seedrandom function described above.
//
math['seedrandom'] = function seedrandom(seed, use_entropy) {
  var key = [];
  var arc4;
 
  // Flatten the seed string or build one from local entropy if needed.
  seed = mixkey(flatten(
    use_entropy ? [seed, pool] :
    arguments.length ? seed :
    [new Date().getTime(), pool, window], 3), key);
 
  // Use the seed to initialize an ARC4 generator.
  arc4 = new ARC4(key);
 
  // Mix the randomness into accumulated entropy.
  mixkey(arc4.S, pool);
 
  // Override Math.random
 
  // This function returns a random double in [0, 1) that contains
  // randomness in every bit of the mantissa of the IEEE 754 value.
 
  math['random'] = function random() {  // Closure to return a random double:
    var n = arc4.g(chunks);             // Start with a numerator n < 2 ^ 48
    var d = startdenom;                 //   and denominator d = 2 ^ 48.
    var x = 0;                          //   and no 'extra last byte'.
    while (n < significance) {          // Fill up all significant digits by
      n = (n + x) * width;              //   shifting numerator and
      d *= width;                       //   denominator and generating a
      x = arc4.g(1);                    //   new least-significant-byte.
    }
    while (n >= overflow) {             // To avoid rounding up, before adding
      n /= 2;                           //   last byte, shift everything
      d /= 2;                           //   right using integer math until
      x >>>= 1;                         //   we have exactly the desired bits.
    }
    return (n + x) / d;                 // Form the number within [0, 1).
  };
 
  // Return the seed that was used
  return seed;
};
 
//
// ARC4
//
// An ARC4 implementation.  The constructor takes a key in the form of
// an array of at most (width) integers that should be 0 <= x < (width).
//
// The g(count) method returns a pseudorandom integer that concatenates
// the next (count) outputs from ARC4.  Its return value is a number x
// that is in the range 0 <= x < (width ^ count).
//
/** @constructor */
function ARC4(key) {
  var t, u, me = this, keylen = key.length;
  var i = 0, j = me.i = me.j = me.m = 0;
  me.S = [];
  me.c = [];
 
  // The empty key [] is treated as [0].
  if (!keylen) { key = [keylen++]; }
 
  // Set up S using the standard key scheduling algorithm.
  while (i < width) { me.S[i] = i++; }
  for (i = 0; i < width; i++) {
    t = me.S[i];
    j = lowbits(j + t + key[i % keylen]);
    u = me.S[j];
    me.S[i] = u;
    me.S[j] = t;
  }
 
  // The "g" method returns the next (count) outputs as one number.
  me.g = function getnext(count) {
    var s = me.S;
    var i = lowbits(me.i + 1); var t = s[i];
    var j = lowbits(me.j + t); var u = s[j];
    s[i] = u;
    s[j] = t;
    var r = s[lowbits(t + u)];
    while (--count) {
      i = lowbits(i + 1); t = s[i];
      j = lowbits(j + t); u = s[j];
      s[i] = u;
      s[j] = t;
      r = r * width + s[lowbits(t + u)];
    }
    me.i = i;
    me.j = j;
    return r;
  };
  // For robust unpredictability discard an initial batch of values.
  // See http://www.rsa.com/rsalabs/node.asp?id=2009
  me.g(width);
}
 
//
// flatten()
// Converts an object tree to nested arrays of strings.
//
/** @param {Object=} result 
  * @param {string=} prop
  * @param {string=} typ */
function flatten(obj, depth, result, prop, typ) {
  result = [];
  typ = typeof(obj);
  if (depth && typ == 'object') {
    for (prop in obj) {
      if (prop.indexOf('S') < 5) {    // Avoid FF3 bug (local/sessionStorage)
        try { result.push(flatten(obj[prop], depth - 1)); } catch (e) {}
      }
    }
  }
  return (result.length ? result : obj + (typ != 'string' ? '\0' : ''));
}
 
//
// mixkey()
// Mixes a string seed into a key that is an array of integers, and
// returns a shortened string seed that is equivalent to the result key.
//
/** @param {number=} smear 
  * @param {number=} j */
function mixkey(seed, key, smear, j) {
  seed += '';                         // Ensure the seed is a string
  smear = 0;
  for (j = 0; j < seed.length; j++) {
    key[lowbits(j)] =
      lowbits((smear ^= key[lowbits(j)] * 19) + seed.charCodeAt(j));
  }
  seed = '';
  for (j in key) { seed += String.fromCharCode(key[j]); }
  return seed;
}
 
//
// lowbits()
// A quick "n mod width" for width a power of 2.
//
function lowbits(n) { return n & (width - 1); }
 
//
// The following constants are related to IEEE 754 limits.
//
startdenom = math.pow(width, chunks);
significance = math.pow(2, significance);
overflow = significance * 2;
 
//
// When seedrandom.js is loaded, we immediately mix a few bits
// from the built-in RNG into the entropy pool.  Because we do
// not want to intefere with determinstic PRNG state later,
// seedrandom will not call math.random on its own again after
// initialization.
//
mixkey(math.random(), pool);
 
// End anonymous scope, and pass initial values.
})(
  [],   // pool: entropy pool starts empty
  Math, // math: package containing random, pow, and seedrandom
  256,  // width: each RC4 output is 0 <= x < 256
  6,    // chunks: at least six RC4 outputs for each double
  52    // significance: there are 52 significant digits in a double
);